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AN EXTENDED BLUNDER ELIMINATION PROCEDURE 

AB STRACT 

Further e laboration on applying and int e rpreting the Q matr ix, on sta­
t istical d istribution of different error i nd icators, Xrid on 1_,ndersta ndi :,p.; 
the scaled residuals. Introducing an extended blunder e limi nation proce­
dure taking into account t he functional dependence of the most suspicious 
observations and of the correspor1ding residuals. The procedure is applied 
in the orthophoto software SORA-OP S (absolute orientation, spatial re ­
section), in the DTM software SCOP (absolute orientation), in the soft ­
ware for analytical aerial triangulation MODEL (relative orientation, 
model connection), and in the universal stiliroutine for absolute orientation 
MODOR. 

1. PRELIM INARY REMARK S 

Details nece0sary for the practice of blunder processing are p,iven ln 
section ::': formulae, a diagramm, and some explanations. The theory under -
1vini' thi:': rrocedure is summari7.ed then in sec tic>n 3. 

Blunder processing includes blunder location and blunder elimination. In 
the case of linear obser ~tion equations (not just lineari zed ones), it is 
possible to locate an d to eliminate more than one erroneous observation , and 
th e11 correcting the results of the adjustment /7/ or, instead of this, re­
peating it (sect ion 2 .1). Non-linear observation equations, on the other 
hand , result in an iterative adjustment, and t he e limination of an erroneous 
obser'"atioli ·· '-=· s~~: t ates further itera tions changing the unkno•t-~ns, and the 
· ector of residuals (section 2 .2). Correspond ingly , procedures are different 
for these two cases (table 1). 

Nota liC>llc> 

A - coefficient IV3trix of observations (adjus tment with obser·; ations) 
B - coetficient ma t rix o f unknowns (adjustment of indirect observations) 
b - number of the largest errors (of the suspicious observations ) checked; 

in this, a submatr ix o f Q of size bxb is ir1verted. There f ore: 
b < b < r vv 
a-

b - number of blunders allowed 
ba- see table 
E

0
- vector of (true) errors 

k - factor- to an e:-ti mated variance to determine bounds in form of 
Tol=k•o (e.g., k={F

1 
. ) 

. -a , 1 , co 
0 
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1 = vector of observations 
1 = Bx = . 1 + v+ 
m- the miuimal number of statistically consistent observations : m=u+b +1 
n - number of observations (for just detecting the presence of a 
N - matrix of normal equations b blunders m=u+b ) 
p = Q w a a 

vv 
Q - co-factor matrix 
Qvv - the co-factor matrix of residuals (the " geometric weight coefficient 

matrix" , /6/); for an adjustment qf indirect observations : 

Q = W- 1- B N- 1BT 
vv 

and for an adjustment with conditions only : 

Q = W- 1ATN- 1A w- 1 
vv 

Q f . f k Q N-1 -co- actor matr1x,o un nowns : -
~ ~-

q - element of a co-factor matri x 

r - redundancy : r =.·n - u 

some variance o 2-
o2-

f 
2 

0 -

the variance of some value counted with the function as determined 
by the adjustment 

0 

... 2 
0 -

the reference variance, corresponding to the weight unity ; the variance 
of a scaled residual 
a-priori estimate of o 2 

0 

02-
v 

2 2 - 1 - variance describing residual reliability : o = o q 
y- 0 Vi Vi 

r - some variance- covariance matrix:E = o 2Q 
0 

Tol - tolerance 
u - number of unknowns 
v - vector of residuals 
+ ~ 

v ·- identical with the classical resuduals v = 1 1 . The superscript 
emphasizes that the corresponding observations have been involved 
in the adjustment 

"' v - corresponds to the same discrepancy 1 - 1 for points which did not 
participate in the adjustment - or as if they did not part icipate 
in it ; 

-v statistically defined quantities ~ith a meaning that is not as 
+ -concrete as that of v or of v . v contains the "scaled residuals" 

(as we prefer to use this term), the controllable part of v-, the 
"contribution to the (reduced) sum of squared residuals" /7 ; ·, the 
residuals with the variance o all over the network . 

0 - 1 
W - weight matrix of observations (W = 011 ) 

x - vector of unknowns 

Signs : 

""" - expectations, estimates 
( ) - submatrix of size ax a(or sub-vector of size a) a . 

+ as superscript - matrix corresponding to an adjustment with the point(s) 
involved 

- as superscript - matrix corresponding to an adjustment with the point(s) 
eliminated 

(bar) - matrix taken for diagonal 
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Adjustment of i ndirect observations Table 1 
Linear observation equat i ons ~ 1 .:=::t::::: .-----+- Non-linear (lineari zed ) observation equations 

,...case of'>---! b =l , b~2 b =b b ~b~ r a .. 
(Unknowns = approximations)+/ 

I 

( Correct ing the unknowns)+/ I 
J 

I 

I . 

I 

!unknowns= approximations I 
I Coefficients' matrix 

Normal equation system 
L 

Solution 

non-linear case~ -l Correcting the unknowns I 
I 

-( convergence 
~· 

Finding the b largest I v ., values I +1/ I 
' Sorting them l 

1 

' Collecting or extracting (Q )b t--~ ~~-~ f Tol ' 
(Any eliminated poi¥/s to be taken~ 

vv l r.1ax back) 
I l L 

Singular ( Q )b (non-linear case) 
lvlj=j-v2j \. vv I 

I 
'/ i -4 

(v)b=((Qvv)b( Qll Jb)(Qll)b(Qvv)b(v)b 

Sorting (~\ acc.to ~~J 
I 

b = b -l j 

~if(b 
0
)b-

0

1)b 
0 

ob-1] _ ci = l,bJ 

if( lv J>Tol) eliminate 

j<.l\+ 1j1~ To1 
non-linear caseJ I 

- Number of e liminated points b a 
J FATAL ERROR ~- I 

'I I 

(Correcting the resn7ts of the I 
adjustment)+ 

I 

+/ processes in brackets may be omitted */'preliminary data snoop lng: v. =v. q 
l l vivi 

I 

j 



2. THE PROCESS 

2.1 Linear (not just linearized) model 

In this case, the location and elimination of blunders is a straightforward 
process. It can be traced in table 1 (its left side and middle columns). 
The heart of the process is the expression 

(2.1)=(3.6) 

The submatrix of Q corresponds to the b worst observations as cefined 
b~r a preliminary "dXta snooping" (see table 1). To g:tin ( Cnv )h it is n ,t 
necessary tu store Q • And i: i.:; possible to cmr,<_ eleT•:e:Jt;:.; uf ~~- ... \·:i1':1 
elements of a triang0Yar decomposition of N ~e.g. of Cholesky) /4/.v Evalu­
ating (2.1) requires the solution of a symmetrical system of b linear equc:..­
tions,and yields sufficiently accurate estimates of the corresponding b 
"scaled residuals" v (if only the "necessary assumptions", as described in 
/7/, are fulfilled. For practical purposes: m = u + b statistically con­
sistent observations must be present aDd have to yiel~ a well conditioned 
normal equation system). Elements of (v)b can then be sorted according to 
their absolute values, and_the first b of them indiv idually compared with 
a suitable tolerance Tol. v are"scaledaresiduals": residuals so scaled 
(within (2.1)) to have the same standard deviation a all over the net­
work. Denoting by~ the a-priori estimate of a , the

0
tolerance for ~. 

can be written as Tol = ka, where k is general~y taken for 2 or 3 (se§ 
(3.7)). The correspondinf=confidence intervals can be read from table 2 or 
fig. l. - The condition vb +

1
1 >Tol indicates the presence of more than 

b blunders. a 
a 

F' 
~--.. ,, "' 

l- ig. l 
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Table 2 

k=Fl/2 
1-a 1 "" 

o' ' 
l-a 

0 

L. 5 . 86 
2.0 .955 
2.5 .98 
3.0 .998 

1 • 

• 
• 
• 
• 
• 
• 

Fig. 2 

• 2 

Distribution of observed 
heights. Residuals on points 
1 and 2 after a least squares 
plane fitting will be equal 
to each other. Correspondingly , 

\ ( Q ) 1 ')\ = 0 vv ,~ 



Important details of the process are concerned with singularities in (Q ) . 
Such singularities mirror the unacceptable geometric configuration of tK~ b 
b observations involved. Fig. 2 illustrates this point, and 1he diagram in 
table L describes the handling of such cases. 

2.2 Non-linear (linearized) model 

In this case points ha 'e to be eliminated one-by-one, each time jumping 
back into the process of iterati7e determination of unknowns (''error and 
trial" method). Generally, submatrices of Q with the size b=l suffice 
fgr this purpose, corresponding to tbe elimiXat ion of the observation with 
]v.l =max . However, if two or more /v ./ -values are equal among themsel·es 
(s~e Appendix II), the corresponding §ubmatrix of Q has to be check ed vv 
on singularity: 

a. as indicated earlier, the singularity of (Q )b corresponds to a geo­
metrically unaccep tab le confiV,uration of the p~~tlcipating observations. 
Only the presence of one (or more) blunder(s) can be detected in such 
cases. Eliminating all these suspicious equations leads to a singular 
normal equation system; correspondingly, the cas e is "fatal". 

b. if (Q ) is non-singular, one can apply expression (2.1) to decide 
which on~vo¥ the observations should be eliminated. There a lways remains 
the case of two or more actually equal errors; the sequential elimination 
of them leads to right conclusions with high probability (notwithstanding 
an eventually wrong order of such eliminations). 

2.3 Counting reliability characterist ics of residuals 0 _ 
v 

o _ is identical with of counted for an imaginary adjustment with the 
c6ncerned point eliminated . It can be (we would like to say: i t has to be) 
determined for all residuals as 

0 -v. 
l 

-1 /2 
= 0 o ql.l. qv.v. 

l l l l 
(2.2) related to ( 3. 4) 

o _ shows how far the corresponding measured quantity is controlled by 
tKe other measurements having been involved in the adjustment. In this 
sence o is the variance characterizing the reliability of the i-th 

V'": 

residuall(possibly in the form v: + o _) 
l- v. 

See Appendix I II for examples. 
l 

2. 4 Swapping branches for linear and non-linear models 

all 

As seen from the point of view of exact mathematics, processing should 
proceed as indicated in table 1. However, in some cases of application 
this may be impractical, and in certa in circumstances more flexible alter­
natives can be empl::Jyed. 

2.4.1 Eliminating blunders one-by-one, as si1own in table 1 by the branch 
for non-linear (linearized) models, can be applied to linear models, as 
well. This is pract i cable for small systems ( in··o l ving relatively small 
sets of data). The process is similar then to that described in /5,6/ with 
the important addition of checking the corresponding submatrices of Q 
on singularity. This is the theory underlying t he subroutine LSQS UB tov~uto­
matize the processing of blunders (and of checking the Q matrix) in 
some of the programs developed at the Ins ti tute of Photogrg~metry of the 
Technical University of Vienna (in all processes of a universal subroutine 
for absolute orientation MODOR - applied in the orthophoto package SORA-OPS, 
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in the DTM package SCOP, and as an autonomous system; - furthermore, in SORA 
for spatial resection; in the analytical aerial triangulation program MODEL 
for relative orientation and model connection). For linear models, LSQSUB 
conducts the entire adjustment of indirect observations on the basis of 
given matrix B, vector 1, weights, and tolerances (for individual residuals, 
and for individual unknowns). For non-linear (linearized) models, LSQSUB 
performs just the last iteration, and eliminates (if necessary) just the 
worst observation (but in case of singularities, two or three observations). 

2.4.2 On the other hand, for the sake of economy (and even of feasibility), 
the way of blunder processing indicated for linear models can be, under 
certain circumstances, applied to non-linear ones. This can be recommended 
for large systems provided with sufficiently accurate first approximations 
of the unknowns, and for eliminating within one step a series of blunders. 
If observations belonging to remote areas of the network are only insigni­
ficantly correlated, submatrices of Q can be collected on a regional bas is. vv 
An example of such appl ications may be a bundle adjustment proceeding some 
differentiated adjustment procedures,when these last ones have been provided 
themselves with efficient blunder processing (based on the same theory). 
The adjustment of large blocks of independent models is another area where 
this technique can be recommended. 

And if just "small" blunders have been eliminated, all elements and results 
of a final adjustment can be computed by the formulae given by Stefanovic 
/7/. 

3. THE RELATED THEORY 

Lack of space forces us to assume the knowledge of the general theory of 
blunder de t ection. As a preparation to this particular text, the reading 
of /5,7,6 - in this order/ is best suited. The sources of the theory go 
back to Baarda /1/. 

As indicated in /3/, a major problem with "data snooping" is the neglection 
of t he correlations among residuals. To solve this problem, the relationship 
between residuals and observational errors /7/ will be used: 

Assuming that we have de termine d the b "most suspicious" observations 
(e.g. by a preliminary data snooping), and using the fact that blunders 
are larger in their absolute value than accidental errors are, the following 
can be written on the basis of (3 .1): 

(~)b contains approximate expectations of true errors of b observations 

(b < r). It is identical with the vector (v-)b for these observations: 

the "function" will be determined by the rest of the observations, which 
have to yield, therefore, a consistent system. The co-factor matrix (Qff)b 
of (~)b , and the corresponding sub-matrix of Q+ are in reciprocal 
relation to each other (Appendix I): vv 

(3.3)+/ 

+I see footnote on next page 
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(3 . 2) contains the entire right side of (3 . 3) : when using the right s i de 
of (3 . 3) , no additional computat i onal effort i s necessary . With it, the 
variance-covar i ance matrix of Ct )b= cv-)b can be expressed as 

Individual Is.! values , determined in (3 . 2), can now be compared with their 
respective va~iances o ~ from (3 . 4) ; the Fisher-test has to be applied to 

E . 

the resulting "K-factor~" : 

K. = 
l 

"'),. F1/2 
-------~ 1-a 1 oo 

0 ' ' 

( 3 . 5) 

In (3 . 5) , we utilize only diagonal elements of L: ...... _"Scaling" (3 . 2) with 
tbe correspnding<o-factor matrix , yields a vecto~E(s)b corresponding to 
c v)b : 

( 3 . 6) 

The co- f actor matrix of (v)b is the uni t matrix . Therefore, (3 . 5) can be 
replaced by 

J ~ l./ ~ 0 · F112 
= Tol "- o 1-a 1 oo 

0' ' 

( 3 . 7) 

(3 . 7) is superior to (3 . 5) when practical understanding of tolerances, 
of probabilities (table 2 , fig . 1 ), and of controlled quanti ties is 
essential . 

X 

The author lS indebted to Dr Kraus for his help and critics . 
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APPENDIX I 

Proving the reciprocal relationship between Qff and o:V 
(I.1) 

+ 
(Qvv)b = (Qll )b-

+ T 
(B)bQxx(B)b = (Qll) b- (Qil) b (I. 2) 

Q+ = 
XX 

(B TWB) -1 (I. 3) 

Q~x~ (B TIIJB - (B)~ (l'n b (B) b) - 1 with b(B)u (1.4) 

The difference of inverses of (I.3) and (I.4): 

(Q+ )-1_ (Q- )-1 = (B)T(W) (B) 
XX XX b b b - T 

;.1u1 tiplying from the left by (B)bQ , and from the right by Q+ (B) 0 XX ' XX 
- T + T - T + T 

(B)b0xx(B)b -(B)bOxx(B)b = (B)bQxx(B)b (1\T)b (B)bQxx(B)b 

~fultiplying by (Q11)b : adding (Q11 )~ to both sides, and taking into account 
(I. 2) : 

2 2 - T . + T - T 
(Qll )b = (Qll) b + (B)b Qxx (B) b (Qll)b- (B) b Qxx (B)b (Qll) b- (B) b Qxx (B)b CW) b CQfi)b (Qll)b 

Approxir.u ting the un:;ler lined rna trices by (Qii) b : and rearranging: 

2. - T + T 
(Qll)b= ((Qll)b+(B)Qxx(B)b) ((Qll)b- (B)bQxx(B)b) 

or, with (I . 1) and (1.2): 

., 
(Q ) 1... . en- '0+ 

11 b = '-<:ff 1 1J~ 'V\'Jb 

Two other forms of this last expression: 

-1 - • + -1 
(Qll)b (~ff)b = (Qll)b(Qvv)b 

(I.S) 

CCQ~)b OV)b) 
1 = (lV)b CQ{f)b 

(1.5) does not contain any neglections for W = I (the unit rm.trix) . In all 
other cases, (1.4), and consequently (I .5), are only valid if the test group 
of b observations is insicrnific~~tlv correlated with the rest of the ohserv-

.j " 

ations . 
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= Some remarks on Q and on v. for highly (or APPENDIX II 

totally) correlat~d residual§ 

+ Residuals v and observational errors E are connected by the relationship /7/: 

+ -1 
v = -Q Q E = - PE vv 11 

(II.1) 

Both Q and P are idempotent, and the rank of both of them equals the redun­
dancy ~ Some consequences ar•e: for diagonal elements d. of any of them 
o~ld .j~l; the trace of both of them equals their rank r~ and therefore the 
aver~ge diagonal element of both of them equals the "relative redundancy" r/u. 
Correspondingly, if r=O, both Q and v+ equal 0 (full absorption of E); and 
if all observations are repeatedvinfinite times, both Q and Q

11 
(and P) 

become unit matrices of infinite size, and v+= E (no er~6r absorption). 

Submatrices of Q (or of P) of the size b ~ r are, generally, non-singular. 
Singularity of s~~h submatrices indicates the total correlation of (some) 
residuals corresponding to the submatrix. This is, by given mathewatical 
model and given Q

11 
, a result of improper geometric peculiarities of the 

network (e.g. some undesirable simmetricities of the distribution of obser­
vations). 

I f a k x k (with k~ r) submatrix of Q (or of P) bas the rank 1, than the 
corresponding totally correlated scal¥d residuals v. counted as 

------~----------------------------------l 

= -1/ 2 + 
vi= qv.v.vi 

l l 

(II.2) 

are equal among themselves in their absolute values. This is bacause the 
. -1/2 

scallng by q in (II.2) corresponds to scaling each row of the singular 
vi vi 

submatrix of Q (or of P) in question by its own diagonal element (it is 
easy to verifyvthat for any symmetrical k x k matrix with the rank 1 a di­
vision (scaling) of each row by the square root of its own diagonal element 
yields a matrix containing identical rows - each being a series of the cor­
responding square roots with the sign of the original element). And vice 
versa: scaled residuals close to each other in their absolute values, are 
suspicious of being highly correlated. 

Example: Plane fit t ing ( 3-parameter transformation) APPENDIX I II 

The same set of data (see the data summary and point scheme below) has been 
counted twice: with Z-tolerance of 0.1 m (case a.), and with Z-tolerance of 
0.4 m (case b.). The relevant messages, summaries and the point scheme, as 
provided by the routine for absolute orientation MODOR, are reprinted below . 

~~se a. Note the simultaneous elimination of points 20 and 10. 

H0"0R1 XV-TOLERANCE= 
Z-TOLERANCE= 

. u 

.1) 
A'lr;'JLAi\ TOLS 0 t.NCS F')h1 KAOPA 

FOR O~EGA AND PHI 

3- ~AqAMETE0 T~ANS~OR~ATI1~ 
--> S1?.uP. EQUATIJtl 3~ CLI'1INHSJ W!T'I DI':iC~EPANCY --> €q~CR. EQUATION :?) E:LI'1Ir1ATED WITH DISC~EPA~ICY 

BECAIJSE OF SitiGULAR G:o I:::HI~ PO.:>ITIJII --> i::~RCR Et:UATIDN 10 ELI'I!I~ATEO HITH DISCREPANCY 
>» !H\~1101 OV£R FLOH SUPPqr:s::> :::O 

>•> HODCR1 FAILURE IN EQUATION SOLUTION 
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Case b. With a larger tolerance, points 10 and 20 have participated (hav e not 
been eliminated) in this adjustment. Notice their location, their d ifferent 
v! listed in col umn DZ (and in the point scheme) . Column DZ contains the 
r~liability characteristic of residuals o _ (they are to be found i n the 
point scheme another time). v 

- -> denotes a warning, and >>> denotes a fatal error message. 

HOOORt XV-TOLERANCE= 
Z-TOlfRANCt:= 

.1 :J 
• 4() 

ANuULA R T1 LERAilCE Fr'l ~ KAPD A 
FOR O~EGA AND PHI 

.on564 RADIAN') 
oOZ2'56 RADIANS 

3-oA~AHETER T1ANSF OR1ATIO~ 
--> EP.RCR EQUATION 3~ ~LIMINATED ~ITH DISCREPAN~T olt91110E+OO 

--· 

--> 

SUHHA~'I' Of' DATA A tiD OF 1!:S'IL7'S 

Cu O ~f'Ifl.\ TES 
~!rl 1:.: L 

N X y 7 

1 G, 0 ~ 1 n • 1 l 9, 'J" 
z 2, J ~I 

"· J) 
1 u. 1" 

J lo,.)J 2. 11 ~.'31 

" &, Qj -2, 10 10 ,1 C 
5 8 . J J -r,. ~J 9.1~ 

& 10.~0 -u. J o lUoH 
10 0 . 01 -1J. 1J 1" , JC 
zc &.JJ r,. o ~ 1 n, JO 
3 0 10,1) 0 0, J D g,r,o 

P.[Sr:JtJAL ~ ~ ·n T rlEI '! ~TA ·nA'! 'l "'R'lO~S 

N OX f 'JX l" F1 Y 

1 .......... ....... • • • W'¥ ... ........ 
2 ........ .... ...... .. .. .. . . ........ 
3 ........ ~· ..... 
" 

.......... ........ ·Ill····¥ ........ 
5 ......... ............ ........ lfo • ........ 
& ....... ....... ......... 

10 ........ ........ ........ ......... 
ZD ....... ..•..... ....... ••••••• 
1Q ••••••• ....... ....... ••••••• 

SIGHA IN Z= .13 IR<;: OIJ!lDA!IC'I'= 5) 

UrlKtiCHN S 

;;TIIII:AR[l E~RORS 

X-FACT OR= 1.0 

X 

o.oo 

S4IFT S r .•f 

" 
0. 00 

T~ANSF OR~ATI O ~ FORMULA! 

XR 
YR 
ZR 

( . ( 
( 

0. J ~J ) 
~.Joo 1 + 
-.lllt ) 

z 

-. 11 

.'lJ91~3z:: ·•.;c 

-.~ a o2e.1a E- or. 
.~">">'H?&C:- 0 2 

Hl PU T 

... " 

R FFEQENC ~ ')Y ~T EH 
X y 7 

• 0 0 1[',nn 1~.n n 

2, U1 r,.~o 1 o. c n 
4,U1 2.0~ tO.u " 
&,00 -?,OC 10, n C 
e •.. t~l -F., OP 1n. r·Q 

1J,QO -H .or 1o. r o 
.oo -1 n, or tn,o~ 

&.01 f>.ll~ 1 0 ,U~ 

1n,ro ,oo l.O, OO 

'lZ • cz 

.14 ,2[, 
-.0 5 ,22 

.1& • 2" 
-.J"< • 20 
.1~ .22 

-.01 .27 
-.11 .~8 

-.zg .2:! 
• 1) 2 . ....... 

AHGULAR E L E ~~NTS 

O~Er;A P>< I KAP P A 

• H02807 

,155 ~ 511£-~ S 

.9'l'J9.,.1t'l.:+OO 

.7~eu7'1Q"-~~ 

-.onooaH> 

• 0215753 •••••••••• 

-,g&f,Q F,h ·02 ) 
-.70~•!&~ - ~ 2 ) .. 

.q qoqn2 ·o~ 1 
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·······~········~··~································································~~· • 
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• .. 
"' • 
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" .. 
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I~ THE ABOVE SCHEHE 

• STANDS FOR " 0 LU3- '1Itl'J3" 
POINTS WITH NEGATIVE NUHB~lS DID N~T PA~TICI~AT~ IN THE ADJUSTMENT 

535. 


