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AN EXTENDED BLUNDER ELIMINATION PROCEDURE

ABSTRACT

Further elaboration on applying and interpreting the Q__ matrix, on sta-
tistical distribution of different error indicators, and on understanding
the scaled residuals. Introducing an extended blunder elimination proce-
dure taking into account the functional dependence of the most suspicious
observations and of the corresponding residuals. The procedure is applied
in the orthophoto software SORA-OPS (absolute orientation, spatial re-
section), in the DTM software SCOP (absolute orientation), in the soft-
ware for analytical aerial triangulation MODEL (relative orientation,

model connection), and in the universal subroutine for absclute orientation
MODOR.

1. PRELIMINARY REMARKS

Details necessary for the practice of blunder processing are given in
section 2: formulae, a diagramm, and some explanations. The theory under-
lying this procedure is summarized then in section 3.

Blunder processing includes blunder location and blunder elimination. In

the case of linear observation equations (not just linearized ones), it 1is
possible to locate and to eliminate more than one erroneous observation, and
then correcting the results of the adjustment /7/ or, instead of this, re-
peating it (section 2.1). Non-linear observation equations, on the other
hand, result in an iterative adjustment, and the elimination of an erroneous
observation . ressitates further iterations changing the unknowns, and the
vector of residuals (section 7.2). Correspondingly, procedures are different
for these two cases (table 1).

Notations

A - coefficient matrix of observations (adjustment with observations)
B - coetficient matrix of unknowns (adjustment of indirect observations)
b - number of the largest errors (of the suspicious observations) checked;
in this, a submatrix of vi of size bxb is inverted. Therefore:
b <b<r
s 2
b - number of blunders allowed
b™- see table i
€ - vector of (true) errors
k - factor to an estimated wvariance to determine bounds in form of

Tol=k«5 (e.g., k:¢Fl—aC,l,w)
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= vector of observations
Bx = 1 + v
- the minimal number of statistically consistent observations: m=utb +1

- number of observations (for just detecting the presence of
- matrix of normal equations ba blunders m:u+ba)

= Quy :
- co-factor matrix

- the co-factor matrix of residuals (the "geometric weight coefficient
matrix", /6/); for an adjustment of indirect observations:

<OJO"UZ€35D—'H—J
<

0 = Wi-p5wsTY
a4
and for an adjustment with conditions only:
Q = wiaTn 1wt
i v -1
Q- co-factor matrix ,of unknowns: Q = N
XX XX

g - element of a co-factor matrix
r - redundancy: r =,n - u

02- some variance
0%- the variance of some value counted with the function as determined
by the adjustment
0 - the reference variance, corresponding to the weight unity; the variance

‘g of a scaled residual

0 - a-priori estimate of cg

o°_ - variance describing residual reliability: o2 = qu-l
v \a o'v:

ivi
. . : _ 2
I - some variance-covariance matrix:I = ooQ

Tol - toleranée
u - number of unknowns
v - vector of residuals

v’ - identical with the classical resuduals v = 1 - 1. The superscript
emphasizes that the corresponding observations have been involved
in the adjustment

- "~

v - corresponds to the same discrepancy 1 - 1 for points which did not
participate in the adjustment - or as if they did not participate
in it;

v - statistically defined quantities with a meaning that is not as

concrete as that of v or of v . v contains the "scaled residuals"
(as we prefer to use this term), the controllable part of v~, the
"contribution to the (reduced) sum of squared residuals" /7/, the
residuals with the variance co all over the network.

W - weight matrix of observations (W = Qil }
X - vector of unknowns
Signs:

- expectations, estimates
( )a - submatrix of size a x a{or sub-vector of size a)

+ as superscript - matrix corresponding to an adjustment with the point(s)
involved

- as superscript - matrix correspondlng to an adjustment with the point(s)
eliminated .

~ (bar) - matrix taken for diagonal
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2, THE PROCEES

2.1 Linear (not just linearized) model

In this case, the location and elimination of blunders is a straightforward
process. It can be traced in table 1 (its left side and middle columns).
The heart of the process is the expression

) (2.1)=(3.6)

1/2
24

Yy (o (vi)gl<v>

(), =040, ) b 117p

Ll b
The submatrix of 0Q corresponds to the b worst observations as defined

by a preliminary "data snooping" (see table 1). To gain (Q'Jv)h it is not
necessary to store Qv . And 1! is possible to cou.i elements of §  with
elements of a trianguiar decomposition of N (e.g. of Cholesky) /4/. Evalu-
ating (2.1) requires the solution of a symmetrical system of b linear equa-
tions,and yields sufficiently accurate estimates of the corresponding b
"scaled residuals" v (if only the ''necessary assumptions', as described in
/7/, are fulfilled. For practical purposes: m = u + b_ statistically con-
sistent observations must be present and have to yielg a well conditioned
normal equation system). Elements of (v), can then be sorted according to
their absolute values, and_the first ba of them individually compared with
a suitable tolerance Tol. v are''scaled residuals'": residuals so scaled
(within (2.1)) to have the same standard deviation ¢ all over the net-
work. Denoting by 8 the a-priori estimate of o , the“tolerance for v.

can be written as Tol = kG, where k is general?y taken for 2 or 3 (Seé
(3.7)). The correspondinT_confidence intervals can be read from table 2 or

fig. 1. - The condition |v >Tol indicates the presence of more than
ba blunders.

ba+1i

Table 2
| rte e,
LR L 0’
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big. i Fig. 2
Distribution of observed
heights. Residuals on points
1 and 2 after a least squares
plane fitting will be equal
to each other. Correspondingly,

lQ, 0, =0

vv 1,2
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Important details of the process are concerned with singularities in (Q )b.
Such singularities mirror the unacceptable geometric configuration of tHe
b observations involved. Fig. 2 illustrates this point, and the diagram in

table L describes the handling of such cases.

2.2 Non-linear (linearized) model

In this case points have to be eliminated one-by-one, each time Jjumping

back into the process of iterative determination of unknowns ("error and
trial" method). Generally, submatrices of Q with the size b=1 suffice
for this purpose, corresponding to the elimination of the observation with
v.l = max. However, if two or more '5. -values are equal among themselves
(s@e Appendix II), the corresponding Submatrix of Q_., has to be checked

on singularity: b

a. as indicated earlier, the singularity of (vi) corresponds to a geo-
metrically unacceptable configuration of the participating observations.
Only the presence of one (or more) blunder(s) can be detected in such
cases. Eliminating all these suspicious equations leads to a singular
normal equation system; correspondingly, the case is "fatal".

b 1if (QVV) is non-singular, one can apply expression (2.1) to decide
which one of the observations should be eliminated. There always remains
the case of two or more actually equal errors; the sequential elimination
of them leads to right conclusions with high probability (notwithstanding
an eventually wrong order of such eliminations).

2.3 Counting reliability characteristics of residuals g -

o__ is identical with o_. counted for an imaginary adjustment with the
concerned point elimina{ed. It can be (we would like to say: it has to be)
determined for all residuals as

) ~1/2
%7 7 % 9.1, 9, v,
1 1 1 1 1

(2.2) related to (3.4)

0 _ shows how far the corresponding measured quantity is controlled by all
the other measurements having been involved in the adjustment. In this
sence o__ is the variance characterizing the reliability of the i-th

residuall(possibly in the form "z i_cv_)

See Appendix III for examples. *

2.4 Swapping branches for linear and non-linear models

As seen from the point of view of exact mathematics, processing should
proceed as indicated in table 1. However, in some cases of application
this may be impractical, and in certain circumstances more flexible alter-
natives can be emploved.

2.4.1 Eliminating blunders one~by-one, as shown in table 1 by the branch

for non-linear (linearized) models, can be applied to linear models, as
well. This is practicable for small systems (involving relatively small

sets of data). The process is similar then to that described in /5,6/ with
the important addition of checking the corresponding submatrices of QV

on singularity. This is the theory underlying the subroutine LSQSUB to Yuto-
matiz e the processing of blunders (and of checking the Q__ matrix) in
some of the programs developed at the Institute of Photogrammetry of the
Technical University of Vienna (in all processes of a universal subroutine
for absolute orientation MODOR - applied in the orthophoto package SORA-OPS,

529.



in the DTM package SCOP, and as an autonomous system; - furthermore, in SORA
for spatial resection; in the analytical aerial triangulation program MODEL
for relative orientation and model connection). For linear models, LSQSUB
conducts the entire adjustment of indirect observations on the basis of
given matrix B, vector 1, weights, and tolerances (for individual residuals,
and for individual unknowns). For non-linear (linearized) models, LSQSUB
performs just the last iteration, and eliminates (if necessary) just the
worst observation (but in case of singularities, two or three observations).

2.4.2 On the other hand, for the sake of economy (and even of feasibility),
the way of blunder processing indicated for linear models can be, under
certain circumstances, applied to non-linear ones. This can be recommended
for large systems provided with sufficiently accurate first approximations
of the unknowns, and for eliminating within one step a series of blunders.

If observations belonging to remote areas of the network are only insigni-
ficantly correlated, submatrices of QVV can be collected on a regional basis.

An example of such applications may be a bundle adjustment proceeding some
differentiated adjustment procedures,when these last ones have been provided
themselves with efficient blunder processing (based on the same theory).

The adjustment of large blocks of independent models is another area where
this technique can be recommended.

And if just "small'" blunders have been eliminated, all elements and results
of a final adjustment can be computed by the formulae given by Stefanovic

P

3. THE RELATED THEORY

Lack of space forces us to assume the knowledge of the general theory of
blunder detection. As a preparation to this particular text, the reading
of /5,7,6 - in this order/ is best suited. The sources of the theory go
back to Baarda /1/.

As indicated in /3/, a major problem with "data snooping" is the neglection
of the correlations among residuals. To solve this problem, the relationship
between residuals and observational errors /7/ will be used:

_ =1
WE = Ny © (3.1)

Assuming that we have determined the b "most suspicious'" observations

(e.g. by a preliminary data snooping), and using the fact that blunders

are larger in their absolute value than accidental errors are, the following
can be written on the basis of (3.1):

Ay L -1
(B) = -(Q )L (Q, ) (v)y (3.2)

(e)b contains approximate expectations of true errors of b observations
(b < r). It is identical with the vector (V_)b for these observations:

the "function" will be determined by the rest of the observations, which
have to yield, therefore, a consistent system. The co-factor matrix (Q;f)b
of (€), , and the corresponding sub-matrix of Q" are in reciprocal
relation to each other (Appendix I): vV

1 _3)+/

-1 _ 3 + =
(Qp 1)y, (QEp)y = (Q1)(Q, )y (3

+/ see footnote on next page
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(3.2) contains the entire right side of (3.3): when using the right side
of (3.3), no additional computational effort is necessary. With it, the
variance-covariance matrix of (g)b: (V“)b can be expressed as

2 1

_ _ 2 -
(ZEE)b_(ZV‘V‘)b— % (Qll)b(vi)b (3.4)

Individual [E.l values, determined in (3.2), can now be compared with their
respective variances Oa from (3.4); the Fisher-test has to be applied to

the resulting "K-factors" :

]
_ 1/2
“37 ‘_“_“___2? “lea,1,% (8.5
O€~ e}

4
In (3.5), we utilize only diagonal elements of Zgg._”Scaling” (3.2) with
the correspnding«<o-factor matrix, yields a vector (E)b corresponding to
(v), :
b

1/2 -1

o 21/2,a -1
(€)= (CQ, )" "(Qu )™ ) Q) Q) (V)

) (3.6)

The co-factor matrix of (é)b is the unit matrix. Therefore, (3.5) can be
replaced by

= > 1/2 _
lv i[qf Oo'Fl—ao,l,w = Tol (3.7)

(3.7) is superior to (3.5) when practical understanding of tolerances,
of probabilities (table 2, fig. 1), and of controlled quantities is
essential.

3
The author is indebted to Dr Kraus for his help and critics.
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APPENDIX I

Proving the reciprocal relationship between ng and Q;V

(Qp= Q)+ B0, B (1.1)
Q)= Q- B @y = @)y @Dy (1.2)
Q- @) (1.3)
o2 BB - B, ®y" with | (B) (1.4)

The difference of inverses of (I.3) and (I.4):

. - T
@Y7 @ = ® T, m),
Multiplying from the 18¢t by (B)bQ;X , and from the right by Q;X(B)g :

(B), Qo By ~B) QL B)L = (B) Q% (B)y (D (B, QL (B)

Multiplying by (Qll)b . adding (Qll)g to both sides, and taking into account
(L+2):
+

(Q)E=(Q P+ (B) Qo (B (0 )= (B, Qe B (@)~ (B Qo BV (), (@), (Q )y,

Approximating the underlined matrices by (Qii)b , and rearranging:
2. -
Q)52 (Q Py B B (Q)p- B2 (B)L)

or, with (I.1) and (I1.2):

-
(Qh * @y, Oy
Two other forms of this last expression:

=i} - I _‘I > (I'S)
)y Wy, * 040, 00 %
(@) (DJ'= (0, (Qepy, )

(I.5) does not contain any neglections for W = I (the unit matrix). In all
other cases, (I.4), and consequently (I.5), are only valid if the test group
of b observations is insignificantly correlated with the rest of the observ-
ations.

532.



: I
Some remarks on Q and on v, for highly (or APPENDIX TIT

totally) correlated residuald

Residuals v and observational errors e are connected by the relationship /7/:
k. =L
v = QVVQllE = Pe (I1.1)

Both Q  and P are idempotent, and the rank of both of themequals the redun-
dancy r. Some consequences are: for diagonal elements d. of any of them
Oéldulsi; the trace of both of them equals their rank r, and therefore the
averége diagonal element of both of theﬁ equals the "relative redundancy" r/u.
Correspondingly, if r=0, both Q and v equal O (full absorption of €); and
if all observations are repeategvinfinite times, both Q and Q (and P)
become unit matrices of infinite size, and v = ¢ (no error absorption).

Submatrices of Q (or of P) of the size b&r are, generally, non-singular.
Singularity of such submatrices indicates the total correlation of (some)
residuals corresponding to the submatrix. This is, by given mathematical
model and given Q , a result of improper geometric peculiarities of the
network (e.g. some undesirable simmetricities of the distribution of obser-
vations).

If a k x k (with k< r) submatrix of QV (or of P) has the rank 1, than the
corresponding totally correlated scaléd residuals v. counted as
= =1/2 +
Vit vy, Vi
il

(1I1.2)

are equal among themselves in their absolute values. This is bacause the
1/2

ivi

submatrix of Q, (or of P) in question by its own diagonal element (it is
easy to verify ¥hat for any symmetrical k x k matrix with the rank 1 a di-
vision (scaling) of each row by the square root of its own diagonal element
yields a matrix containing identical rows - each being a series of the cor-
responding square roots with the sign of the original element). And vice
versa: scaled residuals close to each other in their absolute values, are
suspicious of being highly correlated.

scaling b B in (II.2) corresponds to scaling each row of the singular
E oy 4, P g !

Example: Plane fitting (3-parameter transformation) APPENDIX III

The same set of data (see the data summary and point scheme below) has been
counted twice: with Z-tolerance of 0.1 m (case a.), and with Z-tolerance of
0.4 m (case b.). The relevant messages, summaries and the point scheme, as

provided by the routine for absolute orientation MODOR, are reprinted below.

Case a. Note the simultaneous elimination of points 20 and 10.

MONOR® XY=TOLERANCE= 19 AMNG'JLAR TOLEPANCE FNR KAPPA 2 LN5b4 RADIANS
Z=TOLERANCE= 1) FOR OMEGA AND PHI « 00564 RADIANS

3=-PARAMETE® TRANSFORMATIOY

==> ZRRCGR EQUATIOIH 3. CLIMINATED WITH DISCREPANCY «43810F+00

==> ERRCR ENUATION 23 ELIMIAATED WITH DISCREPAMCY 03437 9E+J0
BECAUSE OF SINGULAR G20 IZTRIG PO3ITIOI

==> EMRCR ENUATION 19 ELIMINATED WITH DISCREPANCY e 34373F%NQ

>>> BAN403 OVERFLOW SUPPRESS3ZID

>»> MODCR3 FAILURE IN EQUATION SOLUTION
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Case b. With a larger tolerance, points 10 and 20 have participated (have not
been eliminated) in this adjustment. Notice their location, their different
vl listed in column DZ (and in the point scheme). Column DZ contains the
réliability characteristic of residuals o _ (they are to be found in the
point scheme another time). M

--> denotes a warning, and >>> denotes a fatal error message.

MODORt® XY=TOLERANCE= 012 AMGULAR TILERANCE FNR KAPPA «UN564 RADIANS
Z=-TOLERANCE= o 40 FOR OMEGA AND PHI 202256 RADIANS

3-PARAMETER TRANSFORMATION
==> ERRCR EQUATION 39 LIMINATED WITH DISCREPANTY +43810E+00

SUHMMARY OF DATA A!D OF ES'ILTS
COORDINATES INPUT

HDAZL REFERENCF SYSTEN
N X Y 2 X Y 7
1 6,01 1%¢7) 9,.9n 2 L0 i0.n0 1id.nn
2 2000 6413 101" 2401 6.00 10.60
3 Leuld 247 3.9 L1 2.0u 10 .07
4 6.0J -2,10 10.1C 6.00 =2,0¢ 10."¢C
5 8.J) -5,09 9.0 Beul ~ho00 in.00
6 10.00 =10,290 10.40 13.0n -i0.0r 10.10
i0 0,07 =1J. 0 17,30 000 =10,0C 11.0"7
a2t 630 6409 17,30 6.0 6Gouf 10,00

-—3 30 10,00 NeJd 9. 40 10,00 200 19.00

PESTIVUALS A'1D THEI? STAWIAD “RRORS e

2] DX #0X £ Ad Ny Nz #C2Z
{ IREEWEY BwEy¥Mm FRENEXR Y BERRIEEXR RN 26
2 REVEIES IWANExs SrREUNR BRI YBPABREEY -0 05 022
3 Fwvnves musxaww RAyueRE ZAEFERSR +16 2"
[ FEIENIE FXuxIEy RV IMPEN REAETEEE - J3 o2
§ weNaNsy FEAEEES FEaBNIN FELuRER « 18 o232
H YEEI¥ERE Fyvwrws FRFCEREE REFEEBE -o04 & 27
1) *essrsr yxxzuss FEBURE Y FREGEES - 11 «58
20 T VIREN BuABEsE REIAEBBY JUAPERS -e29 iz
o=y 30 FIPURIR BFRRARRE PREUBRIR PRRIENS o h2 asvuyny

SIGHA IN Z= «19 (REDUNDANCY= 5)

UMK NIWNS AND THEIR STANDARD CSRRIRS

SHIFTS IN AHGULAR ELEMENTS STALE FACTNP

X L4 z OMEGA PHT KAPPA
UNKHCHNS 0.00 0.00 -e11 0070818 -.0036698 =+0700016 «1000000€4+01
STANHCARD ERRORS 6102807 20215753 #esessrx=e BesEsrareN

X=FACTOR= 1.0

TRANSFORMATION FORMULA1
( XR ) 0.392 ) «3399532E+40 «1558541E=P5 =.366ARLLF-02 ) ( 4%x% )

( (
(t YR) = ( 2,300 ) ¢ ( =.7D02610E-0bL 29379749 +00 =o708ul64E-N2 ) ¥ ( fuin R |
( ZR ) ( =e114 ) ( +3hR3356E=02 «708y710F =02 29899282F+30 ) t 7™ 0
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SCHEME OF VERTICAL RESID'JALS ANO THEI? STANTARD ERRORS

R R R R R R R R

1+ (0.14%0.26)

2 ¢ (=0.,05#2,22) 20 * (=0.29%80.27)

3 4+ (Uel6%0.20)

=33 * (Ne.6280%%%)

4 + (=0.03%0,20)

5 % (0.,18%0.22)

10 # (=00,11%0.586) 6 + (=0.0180,27)
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IN THE ABOVE SCHEME
# STANDS FOR "PLUS=MINYIS™
POINTS WITH NEGATIVE NUMBZRS DID NOT PARTICIPATE IN THE ADJUSTMENT
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